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Abstract

We study the diffusion behavior of a probe, in monomers containing acryloxy and acrylate units that are commonly used in restorative

dentistry. We apply a version of transition state theory with satisfactory results. Results show that transition state theory describes part of the

underlying physics successfully thus reinforcing its applicability as a complement and extension to molecular dynamics simulations.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Modeling; Transition state theory; Dental polymeric materials
1. Introduction

We study the diffusion of a helium probe in systems

consisting of 2,2-bis[4-(2-methacryloxypropoxy)phenyle-

ne]propane (Bis-GMA), ethoxylated bisphenol-A dimetha-

crylate (EBPADM) and a mixture of Bis-GMA and

triethylene glycol dimethacrylate (TEGDMA) (70%/30%)

(Fig. 1).

Bis-GMA is one of the most commonly used polymeric

dental restorative materials. It is part of several polymeric

composite resins currently used for tooth restoration. Bis-

GMA by itself is far too viscous to be used directly. The

reason it is so viscous is that the side chains with the polar

hydroxy groups are separated by a relatively inflexible

central ring system. This configuration does not allow the

rotation of the –OH groups to lower energy intramolecular

hydrogen bonded configurations and thus, intermolecular

hydrogen bonding occurs [1,2]. To decrease this inter-

molecular hydrogen bonding, and lower the viscosity, a

composite resin normally consists of two dimethacrylate

monomers, Bis-GMA and a lower molecular weight diluent,

generally tri-ethylene glycol dimethacrylate (TEGDMA). In
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fact a 60/40 mix of Bis-GMA/TEGDMA is 50 times less

viscous than Bis-GMA alone. In addition to the monomers,

filler is added to the resin (between 45 and 85 mass%) to

produce a stronger, more wear resistant system that has

lower polymerization volume shrinkage and lower thermal

expansion [3]. It is also quite beneficial to rely on finite

element methods (FEM) for the structural optimization of

the filling’s geometry.

The main drawback of the polymeric composite resins is

their overall lack of durability. The typical lifespan for

posterior composite resins is between 3 and 10 years,

normally less than five for large fillings [4]. The main cause

for this lack of durability is internally induced stresses in the

material [5]. These stresses can be caused by interactions

with food, differences in thermal expansion, and volume

shrinkage during polymerization.

The volume shrinkage during polymerization is the

driving force for this study. Shrinkage during polymeriz-

ation can be devastating to the healthy tooth structure as it

can negatively affect the tooth by either adhesive or

cohesive failure [6,7]. If the shrinkage causes adhesive

failure (the restorative pulling away from the tooth)

microcracks can form between the restoration and the

tooth itself. These microcracks then allow bacteria to leak

back into the tooth causing additional damage to the tooth.

In addition, cohesive failure (the restorative or the tooth

failing, while the adhesive layer stays intact) can occur.

When cohesive failure occurs, a crack will either form in the

center of the restorative again allowing intrusion of bacteria,
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Fig. 1. Chemical structure from top to bottom of Bis-GMA, EBPADM and

TEGDMA.

V. Galiatsatos, B.J. Sherman / Polymer 46 (2005) 4384–4389 4385
or the tooth could just shatter. In either case, the importance

of limiting polymerization shrinkage cannot be overstated.

As a first step we aim to understand the free volume and

diffusion characteristics of the components that go into these

dental restoratives. One approach for evaluating diffusion

coefficients D using molecular dynamics involves monitor-

ing the mean-squared displacement hr2i of the diffusing

species as a function of time. More precisely stated, the

Einstein relation DZ limt/NhðrtKr0Þ
2i=6t, holds in the

diffusive regime. Here rt is the position of the diffusing

particle at time t and the angle brackets denote an average

over an ensemble of systems. If the slope of a plot of hr2iZ
hðrtKr0Þ

2i with time is constant, the Einstein formula gives

the diffusion coefficient of interest. The process of penetrant

diffusion in rubbery and glassy polymers can be studied

using the transition state theory, as formulated by Suter and

co-workers [8–10] and as reviewed by Gusev et al. [11].
2. Computational procedure

According to transition state theory, the evolution of the

polymer penetrant system in time is viewed as a Poisson

process consisting of successive, uncorrelated jumps

between neighboring macrostates [12]. Each jump of a

probe from macrostate i to macrostate j is associated with a

first-order rate constant kij.

Consider an ensemble of penetrant/polymer system with

a distribution of probes throughout the macrostates at tZ0;

as time elapses, the distribution evolves through transitions

between macrostates. Let p(t) be the probability of finding a

probe in macrostate i at time t. Now the quantity p(t) evolves

according to the equation:

dpi
dt

ZK
X

j

kijpi C
X

j

kjipj (1)

At very long times, the ensemble reaches its equilibrium

distribution, so then the probability of finding a probe in the
macrostate i is p
eq
i . The equilibrium probabilities obey the

condition of microscopic reversibility [13]:

kijp
eq
i Z kjip

eq
j hkij (2)

Considering Eq. (1) and the normalization condition
X

i

p
eq
i Z 1 (3)

the average residence time in macrostate i at equilibrium is:

tZ
1P
j kij

(4)

Now with the rate constants and the residence time in each

macrostate, the diffusion of the probe may be calculated.

In this work it is assumed that the penetrant motion is

coupled with the thermal or vibrational motion of the

polymer atoms (but not with structural relaxations of the

polymer). The thermal motion of the polymer matrix is

accounted for by using a ‘smearing parameter’ which is

calculated based on displacements of the host atoms

evaluated from a MD simulation.

Additionally using the full atomistic representation of the

probe and the system under investigation, the computational

intensiveness is too great to derive exact results [14].

Following Gusev and Suter, we employ several additional

approximations in order to obtain reasonable computing

times. In this revised transition state methodology, the

approximations make certain calculations less intensive. For

example, a spherical representation of the probe based on its

diameter rather than its atomistic detail simplifies the

evaluation of the rate constant.

In addition, there is no distinction between the states and

macrostates. By using the latter approximation a large

number of local minima are obtained. The system is then

divided up into states and dividing surfaces by constructing

a regular grid through the polymer configurations. The

configurational integrals needed for the evaluation of p
eq
i

and kij are then obtained through direct numerical

integration over the values of the potential energy at the

node points of the grid. The results of the analysis are then

used to calculate the residence times of the penetrants in the

states.

Now that the rate constants and residence times are

obtained, a Monte Carlo jump process can be performed on

the system. A probe molecule is ‘dropped’ into a system at a

randomly chosen state. The initial state is typically selected

with a probability that is proportional to the state’s residence

time. Since each state has already been designated a

residence time, the residence time of the probe in the

specific state is added to the previous summation of the time

of the simulation. For the initial step, the residence time will

be added to tZ0. Based now on the rate constant of the

probe to jump to an adjacent state, the probe is moved a

designated distance from the center of the previous state to

the center of the next adjacent state. Again the residence

time for that state is added to the previously accumulated
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simulation time. This process continues until the accumu-

lated time reaches a predetermined maximum. At this point,

the probe has moved a specified distance from the original

site over a given duration. This distance squared and then

divided by the time results in the diffusion coefficient of the

probe through the system. For each resin system, this Monte

Carlo process is performed at least 500 times to confirm

consistent diffusion coefficient results.

The modeling software used consisted of MSI/Accelrys

Insight version 2.3.7, Discover version 2.9.5 and Amor-

phous Cell version 7.0. All simulations were performed at

308 K. Using one or more of the molecules as inputs, the

amorphous cell is built. In addition to the molecules of

interest, the mass density of the system, as well as the

number of atoms to be used in the amorphous cell are used

as input. Using the experimental density of the materials and

choosing a number of atoms that insures no interchain

interaction, around 2400 atoms (30–37 molecules), the

average amorphous cell size is between 28 and 29 Å per

side. Three to five different configurations of each cell are

created as an attempt to confirm reproducibility.

The refinement is then performed on the built amorphous

cell. An initial minimization of 200 steps is used to

eliminate any unrealistic bond lengths or angles. A

molecular dynamics run of 60,000 steps, 60 ps, is then

performed. Mass densities for the systems were 1.133 g/cm3

for the Bis-GMA system and 1.100 g/cm3 for both the

EBPADM and the Bis-GMA/TEGDMA mixed systems.

The duration of this dynamics run affords standard

deviations of the total energy of the system between 2 and

5% for each of the configurations. A final 1500 step

minimization is then performed on the system, again to

ensure all bond lengths and angles are correct.

To validate the system, a cohesive energy density

calculation is performed on the cells. Cohesive energy,

KU, is defined as the increase in energy per mole of a

material if all intermolecular interactions are eliminated.

Therefore, it is found by subtracting the sum of the total

energy of the system and a tail correction, to ensure there

has been no truncation effect on the energy, from the

intramolecular energy of the parent molecules. The

cohesive energy density, c, would then be the cohesive

energy per unit volume, so that cZKU/V. This cohesive

energy density value is compared to cohesive energy density

values found using the respective molecules and applying

graph-based QSPR theory [15]. The cohesive energy

density found using this method is based on a large number

of 76 experimental values, therefore, the cohesive energy

density value is based on experimental work on similar or

identical systems. Since, all of the properties used in this

work are averaged over the number of configurations, the

average of the cohesive energy density over the given

number of configurations is studied. The system is

considered valid if the cohesive energy densities from the

two methods agree within 10%.

After the cell is constructed, refined, and validated
another molecular dynamics run is performed. This time a

constant pressure dynamics run is performed with the value

used for the pressure taken from the constant volume

dynamics run, careful to confirm that the density of the

system does not change after the constant pressure run has

completed. With the constant pressure run complete, the

free volume can be studied using the outlined transition state

theory approach to follow the diffusion of a probe. At this

point, all of the inputs are entered to follow the diffusion of

the probe in the simulated dental resin system.

The first input is the type of probe. Helium was chosen.

Next, the cell grid step, the distance between the grid points

previously described, is chosen. For all work reported here a

cell grid step of 0.5 Å is used. This grid step size was chosen

based on computational considerations. The temperature

and cutoff distances are also chosen, the temperature being

the temperature of the experimental methods and the cutoff

distance being 8.0 Å, a reasonable number with respect to

the 0.5 Å grid step size.

The final input parameter that needs to be considered is

that of the smearing factor value (between 0 and 1 Å). The

smearing factor allows for the facilitation of the diffusion of

the probe through the system. It ‘allows’ for elastic motions

of the matrix that open and close the pathways between

regions. The smearing factor was calculated from short-

scale MD trajectories of the system in the absence of the

probe. This method does require an initial guess of the

smearing factor and then an optimization can be completed

after a small number of calculations.

This free volume process now creates a data file with the

number and size of the states within the cell. The next step is

to obtain the diffusion coefficient. We utilize the output data

file of the state information to create the trajectory. The only

inputs are the data file, the number of times the jump process

is to be performed (500 times for all systems), and the

duration of each jump process. The distance the probe

moves and the time needed to go the distance are both used

to calculate the diffusion coefficient. If the gradient of

log(MSD) versus log(time) was not unity over the last

decade checked then the simulation time was increased in

order to ensure true diffusion.
3. Results and discussion

An example of residence time results for one confor-

mation of a system of Bis-GMA/TEGDMA is given in

Fig. 2, where the probability of finding a state with the

designated residence time is plotted versus the log of the

residence time. One observes that the majority of sites is

associated with a mean residence times around 10K12 s.

The state volume distribution data for one conformation

of the system of Bis-GMA/TEGDMA is given in the chart

of Fig. 3. The horizontal axis represents the log of the state

volume, with volume in units of Å3 and the vertical axis



Fig. 2. The log of the residence time (in seconds) and the probability of finding that residence time for one conformation of a system of Bis-GMA/TEGDMA.
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gives the number of sites with the corresponding log

volume.

Typical plots with results frommultiple conformations as

well at the average plot are shown in Fig. 4.
Fig. 3. The log of the volume of the states and the number of states with th
The average of the diffusion coefficients of each of the

configurations is used to give the ultimate diffusion

coefficient for each system. The volume found for each

state listed is then used when calculating the distance
at volume for one conformation of a system of Bis-GMA/TEGDMA.



Fig. 4. State volume distribution for a conformation of a Bis/GMA/

TEGDMA system.
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between centers of states, which is ultimately used in the

calculation of the length of the jump a probe makes from

one state to the next. The culmination of all of these jumps is

then given as a table of mean squared displacement versus

time.

A plot of the mean square displacement versus time,

Fig. 5, confirms that the diffusion coefficient found at the

end of the diffusion simulation is in the true diffusion region

and that the diffusion found is valid.

In the diffusion simulations, 500 attempts for moving the

He molecule, each starting at an arbitrary state, were

performed. Fig. 5 shows the time dependence of the mean

squared displacement of the He atom dissolved in the

computed system. Three different regions of probe mobility
Fig. 5. Time dependence of the mean squared displacement of the He
are observed. The first one is limited by the distribution of

the residence times at the initial sites and is terminated at

around 10K11 s. The second region from 10K11 s up to

approximately, 10K10 s reflects the microscopic packing

inhomogeneity of the system. The distinct feature of this

region is that the mean square displacement of the probe

goes as tn, with n!1. This is probably a result of the free

volume channels formed in the spatial web. Those are of

rather complicated geometry and their dimensions are less

than three.

The third regime, that of true diffusion ranges from

approximately, 10K9 s and above. The straight line is drawn

with a slope of unity and following the Einstein relationship

described earlier one may calculate the diffusion coefficient

of the probe in the system.

Table 1 shows the values of D for the three systems

studied. One observes that for the EBPADM and Bis-GMA/

TEGDMA systems the probe diffuses at a rather typical rate

which is in the order of 10K6 s. This is in excellent

agreement with published results of He diffusion in other

glassy polymers [16].

The diffusion coefficient of the Bis-GMA system

suggests that the probe moves an order of magnitude slower

that in the other systems. This behavior merits further

investigation. Explicit incorporation of polymer degrees of

freedom during the calculation may lead to much lower, and

more realistic, energy barriers for the transition state than

those found in the current work. The influence of the size of

the representative volume element should also be investi-

gated further. One cannot obtain a efficient packing of
atom dissolved in the computed Bis-GMA/TEGDMA system.



Table 1

Log D values (units of cm2/s) in each of the three resin systems

Resin system Log D

Bis-GMA K6.30

Ethoxylated bisphenol A dimethacrylate K5.36

Bis-GMA/TEGDMA system K5.58
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molecules if the employed computer model is not large

enough.
4. Conclusions

Diffusion of a helium probe gives results of the order of

10K6 cm2/s in good agreement with previous experience

with glassy systems. This gives us confidence to further

apply transition state theory to investigate free volume

changes as crosslinking occurs. The Bis-GMA system yields

values that are an order of magnitude lower than expected.

At this point we reserve judgment as to the reasons behind

this behavior. We speculate that modifications to the

simulation method to take into account strong hydrogen

bonding may yield more traditional values.
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